3.212 \(\int \frac{x^7}{(b x^2+c x^4)^3} \, dx\)

Optimal. Leaf size=16 \[ -\frac{1}{4 c \left (b+c x^2\right )^2} \]

[Out]

-1/(4*c*(b + c*x^2)^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0094585, antiderivative size = 16, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.118, Rules used = {1584, 261} \[ -\frac{1}{4 c \left (b+c x^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[x^7/(b*x^2 + c*x^4)^3,x]

[Out]

-1/(4*c*(b + c*x^2)^2)

Rule 1584

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(m + n*p)*(a + b*x^(q -
 p))^n, x] /; FreeQ[{a, b, m, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 261

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rubi steps

\begin{align*} \int \frac{x^7}{\left (b x^2+c x^4\right )^3} \, dx &=\int \frac{x}{\left (b+c x^2\right )^3} \, dx\\ &=-\frac{1}{4 c \left (b+c x^2\right )^2}\\ \end{align*}

Mathematica [A]  time = 0.0024142, size = 16, normalized size = 1. \[ -\frac{1}{4 c \left (b+c x^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^7/(b*x^2 + c*x^4)^3,x]

[Out]

-1/(4*c*(b + c*x^2)^2)

________________________________________________________________________________________

Maple [A]  time = 0.043, size = 15, normalized size = 0.9 \begin{align*} -{\frac{1}{4\,c \left ( c{x}^{2}+b \right ) ^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^7/(c*x^4+b*x^2)^3,x)

[Out]

-1/4/c/(c*x^2+b)^2

________________________________________________________________________________________

Maxima [A]  time = 0.986563, size = 35, normalized size = 2.19 \begin{align*} -\frac{1}{4 \,{\left (c^{3} x^{4} + 2 \, b c^{2} x^{2} + b^{2} c\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(c*x^4+b*x^2)^3,x, algorithm="maxima")

[Out]

-1/4/(c^3*x^4 + 2*b*c^2*x^2 + b^2*c)

________________________________________________________________________________________

Fricas [A]  time = 1.49308, size = 51, normalized size = 3.19 \begin{align*} -\frac{1}{4 \,{\left (c^{3} x^{4} + 2 \, b c^{2} x^{2} + b^{2} c\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(c*x^4+b*x^2)^3,x, algorithm="fricas")

[Out]

-1/4/(c^3*x^4 + 2*b*c^2*x^2 + b^2*c)

________________________________________________________________________________________

Sympy [A]  time = 0.426289, size = 27, normalized size = 1.69 \begin{align*} - \frac{1}{4 b^{2} c + 8 b c^{2} x^{2} + 4 c^{3} x^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**7/(c*x**4+b*x**2)**3,x)

[Out]

-1/(4*b**2*c + 8*b*c**2*x**2 + 4*c**3*x**4)

________________________________________________________________________________________

Giac [A]  time = 1.19693, size = 19, normalized size = 1.19 \begin{align*} -\frac{1}{4 \,{\left (c x^{2} + b\right )}^{2} c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(c*x^4+b*x^2)^3,x, algorithm="giac")

[Out]

-1/4/((c*x^2 + b)^2*c)